许可证: 其他
许可证名称: gemma使用条款
许可证链接: https://ai.google.dev/gemma/terms
基础模型: google/gemma-7b
数据集:
- ravithejads/samvaad-hi-filtered
- Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized
- Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized
- Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered
- Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered
- Telugu-LLM-Labs/marathi_alpaca_yahma_cleaned_filtered
- Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered
- Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered
- Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered
- abhinand/tamil-alpaca
- Tensoic/airoboros-3.2_kn
- Tensoic/gpt-teacher_kn
- VishnuPJ/Alpaca_Instruct_Malayalam
- Tensoic/Alpaca-Gujarati
- HydraIndicLM/punjabi_alpaca_52K
- HydraIndicLM/bengali_alpaca_dolly_67k
- OdiaGenAI/Odia_Alpaca_instructions_52k
- yahma/alpaca-cleaned
语言:
- te
- en
- ta
- ml
- mr
- hi
- kn
- sd
- ne
- ur
- as
- gu
- bn
- pa
- or
库名称: transformers
任务标签: 文本生成
Indic-gemma-7b-finetuned-sft-Navarasa-2.0
该模型基于google/gemma-7b,并在15种印度语言和英语的指令数据集上进行了LoRA微调:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
该模型使用unsloth库进行微调,并提供了使用相同库进行更快推理的代码。或者,您也可以使用HuggingFace库进行推理。
训练详情:
模型在约65万条指令样本上进行了训练。
- GPU:1块A100,80GB
- 时间:45小时
- 平台:E2E Networks
安装
!pip install -U xformers --index-url https://download.pytorch.org/whl/cu121
!pip install "unsloth[kaggle-new] @git+https://github.com/unslothai/unsloth.git@nightly"
输入文本格式
### 指令: {instruction}
### 输入: {input}
## 响应: {response}
使用Unsloth进行推理
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None # None表示自动检测。Tesla T4、V100使用Float16,Ampere+使用Bfloat16
load_in_4bit = False
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "Telugu-LLM-Labs/Indic-gemma-7b-finetuned-sft-Navarasa-2.0",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
device_map="auto"
)
FastLanguageModel.for_inference(model) # 启用原生2倍速推理
input_prompt = """
### 指令:
{}
### 输入:
{}
### 响应:
{}"""
input_text = input_prompt.format(
"将以下句子翻译成印地语。", # 指令
"印度是一个伟大的国家。", # 输入
"", # 输出 - 留空以生成!
)
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
response = tokenizer.batch_decode(outputs)
使用HuggingFace进行推理
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"Telugu-LLM-Labs/Indic-gemma-7b-finetuned-sft-Navarasa-2.0",
load_in_4bit = False,
token = hf_token
)
model.to("cuda")
tokenizer = AutoTokenizer.from_pretrained("Telugu-LLM-Labs/Indic-gemma-7b-finetuned-sft-Navarasa-2.0")
input_prompt = """
### 指令:
{}
### 输入:
{}
### 响应:
{}"""
input_text = input_prompt.format(
"将以下句子翻译成印地语。", # 指令
"印度是一个伟大的国家。", # 输入
"", # 输出 - 留空以生成!
)
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
response = tokenizer.batch_decode(outputs)[0]
参考博客文章获取示例。
请查看我们的代码仓库获取训练和推理脚本。
开发者:
该模型是Ravi Theja和Ramsri Goutham的合作成果。如有任何问题,欢迎私信我们中的任何一位。