🚀 Llama-3-ELYZA-JP-8B
Llama-3-ELYZA-JP-8B是一款由ELYZA公司训练的大语言模型。它基于meta-llama/Meta-Llama-3-8B-Instruct,通过额外的预训练和指令调优,增强了在日语场景下的使用效果。(基于Meta Llama3构建)

🚀 快速开始
若想了解更多详情,请参考我们的博客文章。
💻 使用示例
基础用法
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。"
text = "仕事の熱意を取り戻すためのアイデアを5つ挙げてください。"
model_name = "elyza/Llama-3-ELYZA-JP-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
)
model.eval()
messages = [
{"role": "system", "content": DEFAULT_SYSTEM_PROMPT},
{"role": "user", "content": text},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
token_ids = tokenizer.encode(
prompt, add_special_tokens=False, return_tensors="pt"
)
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=1200,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
output = tokenizer.decode(
output_ids.tolist()[0][token_ids.size(1):], skip_special_tokens=True
)
print(output)
👨💻 开发者
按字母顺序排列。
📄 许可证
Meta Llama 3社区许可证
📚 引用方式
引用本模型
@misc{elyzallama2024,
title={elyza/Llama-3-ELYZA-JP-8B},
url={https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B},
author={Masato Hirakawa and Shintaro Horie and Tomoaki Nakamura and Daisuke Oba and Sam Passaglia and Akira Sasaki},
year={2024},
}
引用相关文章
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}