模型简介
模型特点
模型能力
使用案例
🚀 DeepSeek-Coder-V2:突破代码智能领域闭源模型的壁垒
DeepSeek-Coder-V2是一个开源的混合专家(MoE)代码语言模型,在特定代码任务中表现可与GPT4-Turbo相媲美。它在DeepSeek-V2的中间检查点基础上,额外使用6万亿个标记进行进一步预训练,显著提升了DeepSeek-V2的编码和数学推理能力,同时在通用语言任务中保持了相当的性能。与DeepSeek-Coder-33B相比,DeepSeek-Coder-V2在各种代码相关任务、推理和通用能力方面都有显著进步。此外,它支持的编程语言从86种扩展到338种,上下文长度从16K扩展到128K。
🚀 快速开始
模型下载
我们基于DeepSeekMoE框架,向公众发布了具有16B和236B参数的DeepSeek-Coder-V2,其激活参数仅为2.4B和21B,包括基础模型和指令模型。
模型 | 总参数数量 | 激活参数数量 | 上下文长度 | 下载地址 |
---|---|---|---|---|
DeepSeek-Coder-V2-Lite-Base | 16B | 2.4B | 128k | 🤗 HuggingFace |
DeepSeek-Coder-V2-Lite-Instruct | 16B | 2.4B | 128k | 🤗 HuggingFace |
DeepSeek-Coder-V2-Base | 236B | 21B | 128k | 🤗 HuggingFace |
DeepSeek-Coder-V2-Instruct | 236B | 21B | 128k | 🤗 HuggingFace |
DeepSeek-Coder-V2-Instruct-0724 | 236B | 21B | 128k | 🤗 HuggingFace |
在线体验
你可以在DeepSeek的官方网站上与DeepSeek-Coder-V2进行对话:coder.deepseek.com
API平台
我们还在DeepSeek平台上提供了与OpenAI兼容的API:platform.deepseek.com,你可以按需付费使用,价格极具竞争力。
✨ 主要特性
- 性能卓越:在标准基准评估中,DeepSeek-Coder-V2在编码和数学基准测试中表现优于GPT4-Turbo、Claude 3 Opus和Gemini 1.5 Pro等闭源模型。
- 语言支持广泛:支持的编程语言从86种扩展到338种,具体支持的语言列表可查看此处。
- 上下文长度扩展:上下文长度从16K扩展到128K,能够处理更长的输入。
- 新功能丰富:支持函数调用、JSON输出和FIM补全。
📦 安装指南
若要在本地使用DeepSeek-Coder-V2-Lite模型进行推理,使用BF16格式时需要80GB * 8的GPU。
💻 使用示例
基于Huggingface的Transformers进行推理
你可以直接使用Huggingface的Transformers进行模型推理。
代码补全
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
代码插入
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
input_text = """<|fim▁begin|>def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = []
right = []
<|fim▁hole|>
if arr[i] < pivot:
left.append(arr[i])
else:
right.append(arr[i])
return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
对话补全
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
# tokenizer.eos_token_id is the id of <|end▁of▁sentence|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
完整的对话模板可以在Huggingface模型仓库的tokenizer_config.json
中找到。
对话模板示例如下:
<|begin▁of▁sentence|>User: {user_message_1}
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
Assistant:
你还可以添加可选的系统消息:
<|begin▁of▁sentence|>{system_message}
User: {user_message_1}
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
Assistant:
使用vLLM进行推理(推荐)
若要使用vLLM进行模型推理,请将此拉取请求合并到你的vLLM代码库中:https://github.com/vllm-project/vllm/pull/4650。
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 8192, 1
model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you?"}],
[{"role": "user", "content": "write a quick sort algorithm in python."}],
[{"role": "user", "content": "Write a piece of quicksort code in C++."}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
新功能使用示例
函数调用
函数调用允许模型调用外部工具以增强其能力。
# Assume that `model` and `tokenizer` are loaded
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id)
tool_system_prompt = """You are a helpful Assistant.
## Tools
### Function
You have the following functions available:
- `get_current_weather`:
```json
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [
"celsius",
"fahrenheit"
]
}
},
"required": [
"location"
]
}
}
```"""
tool_call_messages = [{"role": "system", "content": tool_system_prompt}, {"role": "user", "content": "What's the weather like in Tokyo and Paris?"}]
tool_call_inputs = tokenizer.apply_chat_template(tool_call_messages, add_generation_prompt=True, return_tensors="pt")
tool_call_outputs = model.generate(tool_call_inputs.to(model.device))
# Generated text: '<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{"location": "Tokyo"}\n```<|tool▁call▁end|>\n<|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{"location": "Paris"}\n```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>'
# Mock response of calling `get_current_weather`
tool_messages = [{"role": "tool", "content": '{"location": "Tokyo", "temperature": "10", "unit": null}'}, {"role": "tool", "content": '{"location": "Paris", "temperature": "22", "unit": null}'}]
tool_inputs = tokenizer.apply_chat_template(tool_messages, add_generation_prompt=False, return_tensors="pt")[:, 1:]
tool_inputs = torch.cat([tool_call_outputs, tool_inputs.to(model.device)], dim=1)
tool_outputs = model.generate(tool_inputs)
# Generated text: The current weather in Tokyo is 10 degrees, and in Paris, it is 22 degrees.<|end▁of▁sentence|>
JSON输出
你可以使用JSON输出模式确保模型生成有效的JSON对象。要激活此模式,需要在系统提示中添加特殊指令。
# Assume that `model` and `tokenizer` are loaded
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id)
user_system_prompt = 'The user will provide some exam text. Please parse the "question" and "answer" and output them in JSON format.'
json_system_prompt = f"""{user_system_prompt}
## Response Format
Reply with JSON object ONLY."""
json_messages = [{"role": "system", "content": json_system_prompt}, {"role": "user", "content": "Which is the highest mountain in the world? Mount Everest."}]
json_inputs = tokenizer.apply_chat_template(json_messages, add_generation_prompt=True, return_tensors="pt")
json_outpus = model.generate(json_inputs.to(model.device))
# Generated text: '```json\n{\n "question": "Which is the highest mountain in the world?",\n "answer": "Mount Everest."\n}\n```<|end▁of▁sentence|>'
FIM补全
在FIM(中间填充)补全中,你可以提供前缀和可选的后缀,模型将补全中间的内容。
# Assume that `model` and `tokenizer` are loaded
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id)
prefix = """def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = []
right = []
"""
suffix = """
if arr[i] < pivot:
left.append(arr[i])
else:
right.append(arr[i])
return quick_sort(left) + [pivot] + quick_sort(right)"""
fim_prompt = f"<|fim▁begin|>{prefix}<|fim▁hole|>{suffix}<|fim▁end|>"
fim_inputs = tokenizer(fim_prompt, add_special_tokens=True, return_tensors="pt").input_ids
fim_outputs = model.generate(fim_inputs.to(model.device))
# Generated text: " for i in range(1, len(arr)):<|end▁of▁sentence|>"
📚 详细文档
有关模型的详细信息,请参考论文链接。
🔧 技术细节
DeepSeek-Coder-V2是一个基于混合专家(MoE)架构的代码语言模型,它在DeepSeek-V2的中间检查点基础上进行了进一步预训练,使用了额外的6万亿个标记。通过这种方式,它显著提升了编码和数学推理能力,同时在通用语言任务中保持了相当的性能。
📄 许可证
本代码仓库遵循MIT许可证。DeepSeek-Coder-V2基础/指令模型的使用需遵循模型许可证。DeepSeek-Coder-V2系列(包括基础和指令模型)支持商业使用。
联系我们
如果你有任何问题,请提出问题或通过service@deepseek.com联系我们。



