Deepseek R1 GGUF
模型简介
基于DeepSeek-R1的量化版本,通过Unsloth的1.58-bit + 2-bit动态量化技术实现高效推理,特别优化了MoE层量化策略
模型特点
动态混合量化
采用1.58-bit + 2-bit动态量化技术,对MoE层进行选择性量化,精度优于标准1-bit/2-bit方案
多版本量化支持
提供1.58bit到2.51bit四种量化方案,平衡磁盘占用与推理精度
GPU加速优化
支持通过llama.cpp进行GPU层卸载,在RTX 4090等设备上实现加速推理
模型能力
英语文本生成
指令跟随
代码理解与生成
使用案例
开发辅助
代码生成
根据自然语言描述生成Python等编程语言代码
示例展示Flappy Bird游戏实现代码生成能力
内容创作
技术文档翻译
中英技术文档的互译处理
支持通过特定提示模板实现结构化翻译
🚀 DeepSeek-R1
DeepSeek-R1 是第一代推理模型,在数学、代码和推理任务上表现出色,性能可与 OpenAI-o1 相媲美。本项目开源了相关模型,为研究社区提供支持。
🚀 快速开始
运行模型
在本地运行 DeepSeek-R1 系列模型前,请先查看使用建议部分。
- DeepSeek-R1 模型:更多关于在本地运行 DeepSeek-R1 的信息,请访问 DeepSeek-V3 仓库。
- DeepSeek-R1-Distill 模型:可以像使用 Qwen 或 Llama 模型一样使用 DeepSeek-R1-Distill 模型。
下载模型
# pip install huggingface_hub hf_transfer
# import os # Optional for faster downloading
# os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
from huggingface_hub import snapshot_download
snapshot_download(
repo_id = "unsloth/DeepSeek-R1-GGUF",
local_dir = "DeepSeek-R1-GGUF",
allow_patterns = ["*UD-IQ1_S*"], # Select quant type UD-IQ1_S for 1.58bit
)
示例运行
./llama.cpp/llama-cli \
--model DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \
--cache-type-k q4_0 \
--threads 12 -no-cnv --prio 2 \
--temp 0.6 \
--ctx-size 8192 \
--seed 3407 \
--prompt "<|User|>Create a Flappy Bird game in Python.<|Assistant|>"
✨ 主要特性
模型创新
- DeepSeek-R1-Zero:通过大规模强化学习(RL)训练,无需监督微调(SFT)作为初步步骤,在推理方面表现出色,具有自我验证、反思和生成长思维链等能力。
- DeepSeek-R1:在 RL 之前加入冷启动数据,解决了 DeepSeek-R1-Zero 存在的问题,如无尽重复、可读性差和语言混合等,在数学、代码和推理任务上达到了与 OpenAI-o1 相当的性能。
模型开源
开源了 DeepSeek-R1-Zero、DeepSeek-R1 以及六个基于 Llama 和 Qwen 从 DeepSeek-R1 蒸馏得到的密集模型,其中 DeepSeek-R1-Distill-Qwen-32B 在各种基准测试中优于 OpenAI-o1-mini,为密集模型取得了新的最优结果。
评估表现
在多个基准测试中表现优异,如在数学、代码和推理任务上的评估结果显示,DeepSeek R1 在多个指标上超过了其他模型。
📦 安装指南
安装依赖
apt-get update
apt-get install build-essential cmake curl libcurl4-openssl-dev -y
git clone https://github.com/ggerganov/llama.cpp
cmake llama.cpp -B llama.cpp/build \
-DBUILD_SHARED_LIBS=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON
cmake --build llama.cpp/build --config Release -j --clean-first --target llama-quantize llama-cli llama-gguf-split
cp llama.cpp/build/bin/llama-* llama.cpp
下载模型
from huggingface_hub import snapshot_download
snapshot_download(
repo_id = "unsloth/DeepSeek-R1-GGUF",
local_dir = "DeepSeek-R1-GGUF",
allow_patterns = ["*UD-IQ1_S*"], # Select quant type UD-IQ1_S for 1.58bit
)
💻 使用示例
基础用法
./llama.cpp/llama-cli \
--model DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \
--cache-type-k q4_0 \
--threads 12 -no-cnv --prio 2 \
--temp 0.6 \
--ctx-size 8192 \
--seed 3407 \
--prompt "<|User|>Create a Flappy Bird game in Python.<|Assistant|>"
高级用法
./llama.cpp/llama-cli \
--model DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \
--cache-type-k q4_0 \
--threads 12 -no-cnv --prio 2 \
--n-gpu-layers 7 \
--temp 0.6 \
--ctx-size 8192 \
--seed 3407 \
--prompt "<|User|>Create a Flappy Bird game in Python.<|Assistant|>"
📚 详细文档
模型概述
后训练:在基础模型上进行大规模强化学习
- 直接对基础模型应用强化学习(RL),无需监督微调(SFT)作为初步步骤,开发出 DeepSeek-R1-Zero,该模型展示了自我验证、反思和生成长思维链等能力。
- 引入开发 DeepSeek-R1 的管道,包括两个 RL 阶段和两个 SFT 阶段,旨在发现更好的推理模式并与人类偏好对齐。
蒸馏:小模型也能强大
- 证明了可以将大模型的推理模式蒸馏到小模型中,开源的 DeepSeek-R1 及其 API 将有助于未来蒸馏出更好的小模型。
- 使用 DeepSeek-R1 生成的样本对开源模型进行微调,得到 DeepSeek-R1-Distill 模型,并对其配置和分词器进行了微调。
模型下载
DeepSeek-R1 模型
模型名称 | 总参数数量 | 激活参数数量 | 上下文长度 | 下载链接 |
---|---|---|---|---|
DeepSeek-R1-Zero | 671B | 37B | 128K | 🤗 HuggingFace |
DeepSeek-R1 | 671B | 37B | 128K | 🤗 HuggingFace |
DeepSeek-R1-Distill 模型
模型名称 | 基础模型 | 下载链接 |
---|---|---|
DeepSeek-R1-Distill-Qwen-1.5B | Qwen2.5-Math-1.5B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Qwen-7B | Qwen2.5-Math-7B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Llama-8B | Llama-3.1-8B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Qwen-14B | Qwen2.5-14B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Qwen-32B | Qwen2.5-32B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Llama-70B | Llama-3.3-70B-Instruct | 🤗 HuggingFace |
评估结果
DeepSeek-R1 评估
类别 | 基准测试(指标) | Claude-3.5-Sonnet-1022 | GPT-4o 0513 | DeepSeek V3 | OpenAI o1-mini | OpenAI o1-1217 | DeepSeek R1 |
---|---|---|---|---|---|---|---|
架构 | - | - | MoE | - | - | MoE | |
激活参数数量 | - | - | 37B | - | - | 37B | |
总参数数量 | - | - | 671B | - | - | 671B | |
英语 | MMLU (Pass@1) | 88.3 | 87.2 | 88.5 | 85.2 | 91.8 | 90.8 |
MMLU-Redux (EM) | 88.9 | 88.0 | 89.1 | 86.7 | - | 92.9 | |
MMLU-Pro (EM) | 78.0 | 72.6 | 75.9 | 80.3 | - | 84.0 | |
DROP (3-shot F1) | 88.3 | 83.7 | 91.6 | 83.9 | 90.2 | 92.2 | |
IF-Eval (Prompt Strict) | 86.5 | 84.3 | 86.1 | 84.8 | - | 83.3 | |
GPQA-Diamond (Pass@1) | 65.0 | 49.9 | 59.1 | 60.0 | 75.7 | 71.5 | |
SimpleQA (Correct) | 28.4 | 38.2 | 24.9 | 7.0 | 47.0 | 30.1 | |
FRAMES (Acc.) | 72.5 | 80.5 | 73.3 | 76.9 | - | 82.5 | |
AlpacaEval2.0 (LC-winrate) | 52.0 | 51.1 | 70.0 | 57.8 | - | 87.6 | |
ArenaHard (GPT-4-1106) | 85.2 | 80.4 | 85.5 | 92.0 | - | 92.3 | |
代码 | LiveCodeBench (Pass@1-COT) | 33.8 | 34.2 | - | 53.8 | 63.4 | 65.9 |
Codeforces (Percentile) | 20.3 | 23.6 | 58.7 | 93.4 | 96.6 | 96.3 | |
Codeforces (Rating) | 717 | 759 | 1134 | 1820 | 2061 | 2029 | |
SWE Verified (Resolved) | 50.8 | 38.8 | 42.0 | 41.6 | 48.9 | 49.2 | |
Aider-Polyglot (Acc.) | 45.3 | 16.0 | 49.6 | 32.9 | 61.7 | 53.3 | |
数学 | AIME 2024 (Pass@1) | 16.0 | 9.3 | 39.2 | 63.6 | 79.2 | 79.8 |
MATH-500 (Pass@1) | 78.3 | 74.6 | 90.2 | 90.0 | 96.4 | 97.3 | |
CNMO 2024 (Pass@1) | 13.1 | 10.8 | 43.2 | 67.6 | - | 78.8 | |
中文 | CLUEWSC (EM) | 85.4 | 87.9 | 90.9 | 89.9 | - | 92.8 |
C-Eval (EM) | 76.7 | 76.0 | 86.5 | 68.9 | - | 91.8 | |
C-SimpleQA (Correct) | 55.4 | 58.7 | 68.0 | 40.3 | - | 63.7 |
蒸馏模型评估
模型 | AIME 2024 pass@1 | AIME 2024 cons@64 | MATH-500 pass@1 | GPQA Diamond pass@1 | LiveCodeBench pass@1 | CodeForces rating |
---|---|---|---|---|---|---|
GPT-4o-0513 | 9.3 | 13.4 | 74.6 | 49.9 | 32.9 | 759 |
Claude-3.5-Sonnet-1022 | 16.0 | 26.7 | 78.3 | 65.0 | 38.9 | 717 |
o1-mini | 63.6 | 80.0 | 90.0 | 60.0 | 53.8 | 1820 |
QwQ-32B-Preview | 44.0 | 60.0 | 90.6 | 54.5 | 41.9 | 1316 |
DeepSeek-R1-Distill-Qwen-1.5B | 28.9 | 52.7 | 83.9 | 33.8 | 16.9 | 954 |
DeepSeek-R1-Distill-Qwen-7B | 55.5 | 83.3 | 92.8 | 49.1 | 37.6 | 1189 |
DeepSeek-R1-Distill-Qwen-14B | 69.7 | 80.0 | 93.9 | 59.1 | 53.1 | 1481 |
DeepSeek-R1-Distill-Qwen-32B | 72.6 | 83.3 | 94.3 | 62.1 | 57.2 | 1691 |
DeepSeek-R1-Distill-Llama-8B | 50.4 | 80.0 | 89.1 | 49.0 | 39.6 | 1205 |
DeepSeek-R1-Distill-Llama-70B | 70.0 | 86.7 | 94.5 | 65.2 | 57.5 | 1633 |
聊天网站与 API 平台
- 可以在 DeepSeek 的官方网站 chat.deepseek.com 上与 DeepSeek-R1 聊天,并切换“DeepThink”按钮。
- 还在 DeepSeek 平台 platform.deepseek.com 上提供了与 OpenAI 兼容的 API。
本地运行方法
DeepSeek-R1 模型
请访问 DeepSeek-V3 仓库获取更多关于在本地运行 DeepSeek-R1 的信息。
DeepSeek-R1-Distill 模型
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --tensor-parallel-size 2 --max-model-len 32768 --enforce-eager
python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --trust-remote-code --tp 2
使用建议
- 将温度设置在 0.5 - 0.7 范围内(建议 0.6),以防止无尽重复或输出不连贯。
- 避免添加系统提示,所有指令应包含在用户提示中。
- 对于数学问题,建议在提示中包含指令,如:“请逐步推理,并将最终答案放在 \boxed{} 内”。
- 评估模型性能时,建议进行多次测试并取平均值。
🔧 技术细节
后训练:在基础模型上进行大规模强化学习
直接对基础模型应用强化学习(RL),无需监督微调(SFT)作为初步步骤,开发出 DeepSeek-R1-Zero。该模型展示了自我验证、反思和生成长思维链等能力,是第一个通过纯 RL 激励大语言模型推理能力的开放研究。
蒸馏:小模型也能强大
证明了可以将大模型的推理模式蒸馏到小模型中,使用 DeepSeek-R1 生成的样本对开源模型进行微调,得到 DeepSeek-R1-Distill 模型,并对其配置和分词器进行了微调。
📄 许可证
本代码仓库和模型权重遵循 MIT 许可证。DeepSeek-R1 系列支持商业使用,允许进行任何修改和衍生作品,包括但不限于蒸馏训练其他大语言模型。请注意:
- DeepSeek-R1-Distill-Qwen-1.5B、DeepSeek-R1-Distill-Qwen-7B、DeepSeek-R1-Distill-Qwen-14B 和 DeepSeek-R1-Distill-Qwen-32B 源自 Qwen-2.5 系列,原许可证为 Apache 2.0 许可证,现在使用 DeepSeek-R1 精心策划的 800k 样本进行微调。
- DeepSeek-R1-Distill-Llama-8B 源自 Llama3.1-8B-Base,原许可证为 llama3.1 许可证。
- DeepSeek-R1-Distill-Llama-70B 源自 Llama3.3-70B-Instruct,原许可证为 llama3.3 许可证。
引用
@misc{deepseekai2025deepseekr1incentivizingreasoningcapability,
title={DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning},
author={DeepSeek-AI and Daya Guo and Dejian Yang and Haowei Zhang and Junxiao Song and Ruoyu Zhang and Runxin Xu and Qihao Zhu and Shirong Ma and Peiyi Wang and Xiao Bi and Xiaokang Zhang and Xingkai Yu and Yu Wu and Z. F. Wu and Zhibin Gou and Zhihong Shao and Zhuoshu Li and Ziyi Gao and Aixin Liu and Bing Xue and Bingxuan Wang and Bochao Wu and Bei Feng and Chengda Lu and Chenggang Zhao and Chengqi Deng and Chenyu Zhang and Chong Ruan and Damai Dai and Deli Chen and Dongjie Ji and Erhang Li and Fangyun Lin and Fucong Dai and Fuli Luo and Guangbo Hao and Guanting Chen and Guowei Li and H. Zhang and Han Bao and Hanwei Xu and Haocheng Wang and Honghui Ding and Huajian Xin and Huazuo Gao and Hui Qu and Hui Li and Jianzhong Guo and Jiashi Li and Jiawei Wang and Jingchang Chen and Jingyang Yuan and Junjie Qiu and Junlong Li and J. L. Cai and Jiaqi Ni and Jian Liang and Jin Chen and Kai Dong and Kai Hu and Kaige Gao and Kang Guan and Kexin Huang and Kuai Yu and Lean Wang and Lecong Zhang and Liang Zhao and Litong Wang and Liyue Zhang and Lei Xu and Leyi Xia and Mingchuan Zhang and Minghua Zhang and Minghui Tang and Meng Li and Miaojun Wang and Mingming Li and Ning Tian and Panpan Huang and Peng Zhang and Qiancheng Wang and Qinyu Chen and Qiushi Du and Ruiqi Ge and Ruisong Zhang and Ruizhe Pan and Runji Wang and R. J. Chen and R. L. Jin and Ruyi Chen and Shanghao Lu and Shangyan Zhou and Shanhuang Chen and Shengfeng Ye and Shiyu Wang and Shuiping Yu and Shunfeng Zhou and Shuting Pan and S. S. Li and Shuang Zhou and Shaoqing Wu and Shengfeng Ye and Tao Yun and Tian Pei and Tianyu Sun and T. Wang and Wangding Zeng and Wanjia Zhao and Wen Liu and Wenfeng Liang and Wenjun Gao and Wenqin Yu and Wentao Zhang and W. L. Xiao and Wei An and Xiaodong Liu and Xiaohan Wang and Xiaokang Chen and Xiaotao Nie and Xin Cheng and Xin Liu and Xin Xie and Xingchao Liu and Xinyu Yang and Xinyuan Li and Xuecheng Su and Xuheng Lin and X. Q. Li and Xiangyue Jin and Xiaojin Shen and Xiaosha Chen and Xiaowen Sun and Xiaoxiang Wang and Xinnan Song and Xinyi Zhou and Xianzu Wang and Xinxia Shan and Y. K. Li and Y. Q. Wang and Y. X. Wei and Yang Zhang and Yanhong Xu and Yao Li and Yao Zhao and Yaofeng Sun and Yaohui Wang and Yi Yu and Yichao Zhang and Yifan Shi and Yiliang Xiong and Ying He and Yishi Piao and Yisong Wang and Yixuan Tan and Yiyang Ma and Yiyuan Liu and Yongqiang Guo and Yuan Ou and Yuduan Wang and Yue Gong and Yuheng Zou and Yujia He and Yunfan Xiong and Yuxiang Luo and Yuxiang You and Yuxuan Liu and Yuyang Zhou and Y. X. Zhu and Yanhong Xu and Yanping Huang and Yaohui Li and Yi Zheng and Yuchen Zhu and Yunxian Ma and Ying Tang and Yukun Zha and Yuting Yan and Z. Z. Ren and Zehui Ren and Zhangli Sha and Zhe Fu and Zhean Xu and Zhenda Xie and Zhengyan Zhang and Zhewen Hao and Zhicheng Ma and Zhigang Yan and Zhiyu Wu and Zihui Gu and Zijia Zhu and Zijun Liu and Zilin Li and Ziwei Xie and Ziyang Song and Zizheng Pan and Zhen Huang and Zhipeng Xu and Zhongyu Zhang and Zhen Zhang},
year={2025},
eprint={2501.12948},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.12948},
}
特殊感谢
非常感谢 DeepSeek 团队创建并发布这些模型。
联系我们
如果您有任何问题,请提出问题或通过 service@deepseek.com 联系我们。
Phi 2 GGUF
其他
Phi-2是微软开发的一个小型但强大的语言模型,具有27亿参数,专注于高效推理和高质量文本生成。
大型语言模型 支持多种语言
P
TheBloke
41.5M
205
Roberta Large
MIT
基于掩码语言建模目标预训练的大型英语语言模型,采用改进的BERT训练方法
大型语言模型 英语
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基础模型的蒸馏版本,在保持相近性能的同时更轻量高效,适用于序列分类、标记分类等自然语言处理任务。
大型语言模型 英语
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一个多语言大语言模型,针对多语言对话用例进行了优化,在常见的行业基准测试中表现优异。
大型语言模型 英语
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基于100种语言的2.5TB过滤CommonCrawl数据预训练的多语言模型,采用掩码语言建模目标进行训练。
大型语言模型 支持多种语言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基于Transformer架构的英语预训练模型,通过掩码语言建模目标在海量文本上训练,支持文本特征提取和下游任务微调
大型语言模型 英语
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI发布的开放预训练Transformer语言模型套件,参数量从1.25亿到1750亿,旨在对标GPT-3系列性能,同时促进大规模语言模型的开放研究。
大型语言模型 英语
O
facebook
6.3M
198
1
基于transformers库的预训练模型,适用于多种NLP任务
大型语言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多语言大语言模型系列,包含8B、70B和405B参数规模,支持8种语言和代码生成,优化了多语言对话场景。
大型语言模型
Transformers 支持多种语言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基础版是由Google开发的文本到文本转换Transformer模型,参数规模2.2亿,支持多语言NLP任务。
大型语言模型 支持多种语言
T
google-t5
5.4M
702
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98
智启未来,您的人工智能解决方案智库
简体中文