语言:
- 英文
标签:
- 代码
- 自动补全
- PyTorch
- 英文
许可证: Apache-2.0
库名称: transformers
任务标签: 文本生成
小部件示例:
代码自动补全GPT2模型
专为Python设计的代码智能补全插件。
code-autocomplete 能够基于GPT2模型实现代码行与代码块的智能自动补全。
使用方式
开源仓库地址:code-autocomplete,支持GPT2模型,使用方法:
from autocomplete.gpt2_coder import GPT2Coder
m = GPT2Coder("shibing624/code-autocomplete-distilgpt2-python")
print(m.generate('import torch.nn as')[0])
也可直接使用huggingface/transformers库:
请使用'GPT2'相关函数加载本模型!
import os
from transformers import GPT2Tokenizer, GPT2LMHeadModel
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
tokenizer = GPT2Tokenizer.from_pretrained("shibing624/code-autocomplete-distilgpt2-python")
model = GPT2LMHeadModel.from_pretrained("shibing624/code-autocomplete-distilgpt2-python")
prompts = [
"""from torch import nn
class LSTM(Module):
def __init__(self, *,
n_tokens: int,
embedding_size: int,
hidden_size: int,
n_layers: int):""",
"""import numpy as np
import torch
import torch.nn as""",
"import java.util.ArrayList",
"def factorial(n):",
]
for prompt in prompts:
input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors='pt')
outputs = model.generate(input_ids=input_ids,
max_length=64 + len(prompt),
temperature=1.0,
top_k=50,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
num_return_sequences=1,
length_penalty=2.0,
early_stopping=True)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded)
print("=" * 20)
输出示例:
from torch import nn
class LSTM(Module):
def __init__(self, *,
n_tokens: int,
embedding_size: int,
hidden_size: int,
n_layers: int):
self.embedding_size = embedding_size
====================
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
模型文件结构:
code-autocomplete-distilgpt2-python
├── config.json
├── merges.txt
├── pytorch_model.bin
├── special_tokens_map.json
├── tokenizer_config.json
└── vocab.json
训练数据
PyTorch优质项目源代码
下载code-autocomplete后执行:
cd autocomplete
python create_dataset.py
如需训练自定义的code-autocomplete GPT2模型,请参考:https://github.com/shibing624/code-autocomplete/blob/main/autocomplete/gpt2_coder.py
关于GPT2
完整生成能力测试地址: https://transformer.huggingface.co/doc/gpt2-large
该模型采用因果语言建模(CLM)目标在英文语料上预训练,首次发表于这篇论文,并在此页面发布。
免责声明:GPT-2研发团队同时发布了模型卡片。本卡片内容由Hugging Face团队补充撰写,旨在提供更完整的偏差示例说明。
引用文献
@misc{code-autocomplete,
author = {徐明},
title = {code-autocomplete: 基于GPT模型的代码自动补全工具},
year = {2022},
publisher = {GitHub},
journal = {GitHub仓库},
url = {https://github.com/shibing624/code-autocomplete},
}