Unixcoder Base Nine
UniXcoder是一个统一的多模态预训练模型,通过利用多模态数据(如代码注释和抽象语法树)来预训练代码表示。
下载量 17.35k
发布时间 : 4/2/2022
模型简介
UniXcoder是一个统一的多模态预训练模型,旨在通过利用代码注释和抽象语法树等多模态数据来预训练代码表示,支持多种代码相关任务。
模型特点
多模态预训练
利用代码注释和抽象语法树等多模态数据进行预训练,提升代码表示能力。
统一架构
支持仅编码器、仅解码器和编码器-解码器三种模式,适用于多种代码相关任务。
零样本任务支持
支持代码搜索、代码补全、函数名预测、API推荐和代码摘要等多种零样本任务。
模型能力
代码搜索
代码补全
函数名预测
API推荐
代码摘要
使用案例
代码理解与生成
代码搜索
通过自然语言查询搜索相关代码片段。
能够准确匹配自然语言描述与代码功能。
代码补全
根据上下文自动补全代码。
生成符合上下文的代码补全建议。
代码文档化
函数名预测
根据函数体预测函数名称。
生成符合函数功能的名称建议。
代码摘要
为代码生成自然语言摘要。
生成简洁准确的代码功能描述。
🚀 UniXcoder-base模型卡片
UniXcoder是一个统一的跨模态预训练模型,它利用多模态数据(即代码注释和抽象语法树AST)来预训练代码表示。该模型在代码处理相关任务中具有重要价值,能有效提升代码理解和生成的能力。
🚀 快速开始
依赖安装
pip install torch
pip install transformers
快速上手
我们实现了一个类来使用UniXcoder,你可以按照以下代码构建UniXcoder。 你可以通过以下命令下载该类:
wget https://raw.githubusercontent.com/microsoft/CodeBERT/master/UniXcoder/unixcoder.py
import torch
from unixcoder import UniXcoder
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = UniXcoder("microsoft/unixcoder-base")
model.to(device)
接下来,我们将给出几种不同模式下的零样本示例,包括 代码搜索(仅编码器)、代码补全(仅解码器)、函数名预测(编码器 - 解码器)、API推荐(编码器 - 解码器)、代码摘要(编码器 - 解码器)。
✨ 主要特性
UniXcoder是一个统一的跨模态预训练模型,利用多模态数据(即代码注释和AST)来预训练代码表示。
- 开发者:微软团队
- 共享方(可选):Hugging Face
- 模型类型:特征工程
- 语言(NLP):英语
- 许可证:Apache - 2.0
- 相关模型:
- 父模型:RoBERTa
- 更多信息资源:
💻 使用示例
基础用法
仅编码器模式
对于仅编码器模式,我们给出一个 代码搜索 的示例。
代码和自然语言嵌入
以下是一个从CodeBERT获取代码片段嵌入的示例。
# Encode maximum function
func = "def f(a,b): if a>b: return a else return b"
tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
tokens_embeddings,max_func_embedding = model(source_ids)
# Encode minimum function
func = "def f(a,b): if a<b: return a else return b"
tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
tokens_embeddings,min_func_embedding = model(source_ids)
# Encode NL
nl = "return maximum value"
tokens_ids = model.tokenize([nl],max_length=512,mode="<encoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
tokens_embeddings,nl_embedding = model(source_ids)
print(max_func_embedding.shape)
print(max_func_embedding)
torch.Size([1, 768])
tensor([[ 8.6533e-01, -1.9796e+00, -8.6849e-01, 4.2652e-01, -5.3696e-01,
-1.5521e-01, 5.3770e-01, 3.4199e-01, 3.6305e-01, -3.9391e-01,
-1.1816e+00, 2.6010e+00, -7.7133e-01, 1.8441e+00, 2.3645e+00,
...,
-2.9188e+00, 1.2555e+00, -1.9953e+00, -1.9795e+00, 1.7279e+00,
6.4590e-01, -5.2769e-02, 2.4965e-01, 2.3962e-02, 5.9996e-02,
2.5659e+00, 3.6533e+00, 2.0301e+00]], device='cuda:0',
grad_fn=<DivBackward0>)
代码和自然语言的相似度
现在,我们计算自然语言和两个函数之间的余弦相似度。尽管两个函数的差异仅在于一个运算符(<
和 >
),但UniXcoder可以区分它们。
# Normalize embedding
norm_max_func_embedding = torch.nn.functional.normalize(max_func_embedding, p=2, dim=1)
norm_min_func_embedding = torch.nn.functional.normalize(min_func_embedding, p=2, dim=1)
norm_nl_embedding = torch.nn.functional.normalize(nl_embedding, p=2, dim=1)
max_func_nl_similarity = torch.einsum("ac,bc->ab",norm_max_func_embedding,norm_nl_embedding)
min_func_nl_similarity = torch.einsum("ac,bc->ab",norm_min_func_embedding,norm_nl_embedding)
print(max_func_nl_similarity)
print(min_func_nl_similarity)
tensor([[0.3002]], device='cuda:0', grad_fn=<ViewBackward>)
tensor([[0.1881]], device='cuda:0', grad_fn=<ViewBackward>)
仅解码器模式
对于仅解码器模式,我们给出一个 代码补全 的示例。
context = """
def f(data,file_path):
# write json data into file_path in python language
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<decoder-only>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=True, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print(context+predictions[0][0])
def f(data,file_path):
# write json data into file_path in python language
data = json.dumps(data)
with open(file_path, 'w') as f:
f.write(data)
编码器 - 解码器模式
对于编码器 - 解码器模式,我们给出两个示例,包括:函数名预测、API推荐、代码摘要。
函数名预测
context = """
def <mask0>(data,file_path):
data = json.dumps(data)
with open(file_path, 'w') as f:
f.write(data)
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print([x.replace("<mask0>","").strip() for x in predictions[0]])
['write_json', 'write_file', 'to_json']
API推荐
context = """
def write_json(data,file_path):
data = <mask0>(data)
with open(file_path, 'w') as f:
f.write(data)
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print([x.replace("<mask0>","").strip() for x in predictions[0]])
['json.dumps', 'json.loads', 'str']
代码摘要
context = """
# <mask0>
def write_json(data,file_path):
data = json.dumps(data)
with open(file_path, 'w') as f:
f.write(data)
"""
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>")
source_ids = torch.tensor(tokens_ids).to(device)
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128)
predictions = model.decode(prediction_ids)
print([x.replace("<mask0>","").strip() for x in predictions[0]])
['Write JSON to file', 'Write json to file', 'Write a json file']
📄 许可证
本模型使用的许可证为Apache - 2.0。
📚 详细文档
引用说明
如果你使用此代码或UniXcoder,请考虑引用我们。
@article{guo2022unixcoder,
title={UniXcoder: Unified Cross-Modal Pre-training for Code Representation},
author={Guo, Daya and Lu, Shuai and Duan, Nan and Wang, Yanlin and Zhou, Ming and Yin, Jian},
journal={arXiv preprint arXiv:2203.03850},
year={2022}
}
Codebert Base
CodeBERT是一个面向编程语言与自然语言的预训练模型,基于RoBERTa架构,支持代码搜索和代码生成文档等功能。
多模态融合
C
microsoft
1.6M
248
Llama 4 Scout 17B 16E Instruct
其他
Llama 4 Scout是Meta开发的多模态AI模型,采用混合专家架构,支持12种语言的文本和图像交互,具有17B激活参数和109B总参数。
多模态融合
Transformers 支持多种语言

L
meta-llama
817.62k
844
Unixcoder Base
Apache-2.0
UniXcoder是一个统一的多模态预训练模型,利用代码注释和抽象语法树等多模态数据预训练代码表示。
多模态融合
Transformers 英语

U
microsoft
347.45k
51
TITAN
TITAN是一个多模态全切片基础模型,通过视觉自监督学习和视觉-语言对齐进行预训练,用于病理学图像分析。
多模态融合
Safetensors 英语
T
MahmoodLab
213.39k
37
Qwen2.5 Omni 7B
其他
Qwen2.5-Omni 是一个端到端的多模态模型,能够感知文本、图像、音频和视频等多种模态,并以流式方式生成文本和自然语音响应。
多模态融合
Transformers 英语

Q
Qwen
206.20k
1,522
Minicpm O 2 6
MiniCPM-o 2.6是一款手机端运行的GPT-4o级多模态大模型,支持视觉、语音与直播流处理
多模态融合
Transformers 其他

M
openbmb
178.38k
1,117
Llama 4 Scout 17B 16E Instruct
其他
Llama 4 Scout是Meta推出的17B参数/16专家混合的多模态AI模型,支持12种语言和图像理解,具有行业领先性能。
多模态融合
Transformers 支持多种语言

L
chutesai
173.52k
2
Qwen2.5 Omni 3B
其他
Qwen2.5-Omni是一款端到端多模态模型,能够感知文本、图像、音频和视频等多种模态信息,并以流式方式同步生成文本和自然语音响应。
多模态融合
Transformers 英语

Q
Qwen
48.07k
219
One Align
MIT
Q-Align是一个多任务视觉评估模型,专注于图像质量评估(IQA)、美学评估(IAA)和视频质量评估(VQA),在ICML2024上发表。
多模态融合
Transformers

O
q-future
39.48k
25
Biomedvlp BioViL T
MIT
BioViL-T是一个专注于分析胸部X光片和放射学报告的视觉语言模型,通过时序多模态预训练提升性能。
多模态融合
Transformers 英语

B
microsoft
26.39k
35
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98
智启未来,您的人工智能解决方案智库
简体中文