language:
- en
- zh
library_name: transformers
tags:
- 长文本处理
- chatglm
- llama
datasets:
- THUDM/LongWriter-6k
pipeline_tag: text-generation
LongWriter-glm4-9b
🤗 [LongWriter数据集] • 💻 [Github仓库] • 📃 [LongWriter论文]
LongWriter-glm4-9b基于glm-4-9b训练而成,能够一次性生成10,000字以上的文本。
运行环境:与glm-4-9b-chat相同(需transformers>=4.43.0
)。
模型部署的简单示例:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-glm4-9b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("THUDM/LongWriter-glm4-9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
model = model.eval()
query = "撰写一篇10000字的中国旅游指南"
response, history = model.chat(tokenizer, query, history=[], max_new_tokens=32768, temperature=0.5)
print(response)
您也可以使用vllm部署模型,该框架可在一分钟内生成10,000字以上的文本。示例代码如下:
from vllm import LLM, SamplingParams
model = LLM(
model= "THUDM/LongWriter-glm4-9b",
dtype="auto",
trust_remote_code=True,
tensor_parallel_size=1,
max_model_len=32768,
gpu_memory_utilization=1,
)
tokenizer = model.get_tokenizer()
stop_token_ids = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), tokenizer.get_command("<|observation|>")]
generation_params = SamplingParams(
temperature=0.5,
top_p=0.8,
top_k=50,
max_tokens=32768,
repetition_penalty=1,
stop_token_ids=stop_token_ids
)
query = "撰写一篇10000字的中国旅游指南"
input_ids = tokenizer.build_chat_input(query, history=[], role='user').input_ids[0].tolist()
outputs = model.generate(
sampling_params=generation_params,
prompt_token_ids=[input_ids],
)
output = outputs[0]
print(output.outputs[0].text)
许可证:glm-4-9b许可证
引用
如果您觉得我们的工作有帮助,请考虑引用LongWriter:
@article{bai2024longwriter,
title={LongWriter: 从长文本LLM中释放10,000+字生成能力},
author={白雨石 and 张家杰 and 吕昕 and 郑林志 and 朱思齐 and 侯磊 and 董宇霄 and 唐杰 and 李涓子},
journal={arXiv预印本 arXiv:2408.07055},
year={2024}
}