🚀 Pipable的pipSQL
Pipable的pipSQL是一个从llama 1b蒸馏而来的模型,可根据给定的提示和模式生成SQL查询。该模型在许多基准测试的SQL任务中表现优于ChatGPT和Claude。
🚀 快速开始
请参考https://huggingface.co/PipableAI/pipSQL-1.3b获取我们的先进模型,它在许多基准测试的SQL任务中比ChatGPT和Claude表现更好。
✨ 主要特性
Pipable的pipSQL使用了独特的管道,让模型交替完成两个目标:
- 最大化序列中所有标记(包括提示标记)的对数概率。
- 最小化输出标记(即整个序列中SQL查询部分的生成标记)的真实值与预测最大值之间的差异。
📦 安装指南
暂未提供相关安装步骤。
💻 使用示例
基础用法
text = """<schema>{schema}</schema>
<question>{question}</question>
<sql>"""
高级用法
PyTorch
from transformers import AutoModelForCasualLM, AutoTokenizer
device = "cuda"
model = AutoModelForCausalLM.from_pretrained("PipableAI/pipSQL1b")
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pipSQL1b")
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True).split('<sql>')[1].split('</sql>')[0])
Flax
from transformers import FlaxAutoModelForCasualLM, AutoTokenizer
model = FlaxAutoModelForCausalLM.from_pretrained("PipableAI/pipSQL1b" , from_pt=True)
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pipSQL1b")
📚 详细文档
模型信息
属性 |
详情 |
模型类型 |
从llama 1b蒸馏而来的文本生成模型 |
训练数据 |
PipableAI/spider-bird |
评估指标 |
准确率 |
标签 |
code、sql、text2sql、instruction_tuned、jax、pytorch、1b、expert |
示例输入
<schema>CREATE TABLE radio(age VARCHAR, radio_id VARCHAR, frequency VARCHAR, wavelength VARCHAR); CREATE TABLE radio_faults(radio_id VARCHAR, fault_description VARCHAR)</schema><question>Get the radio id and defect descriptions of radios that have wavelength greater than 30 ?</question><sql>
<schema>CREATE TABLE system(JobID: String,GID: String, UID: String, Start:Time(yyyy/mm/dd), End: Time,ElapsedRaw: Time, CPUTimeRAW: Time,NCPUS: Number,NNodes: Number, NodeList: List, State:String, Timelimit: Time);</schema><question>Get UID and job id for Jobs that started on Jan 20 , 2023</question><sql>
<schema>CREATE TABLE department (Department_ID number, Name text, Creation text, Ranking number, Budget_in_Billions number, Num_Employees number) which has Department_ID as primary key abd CREATE TABLE head (head_ID number, name text, born_state text, age number) which has head_ID as primary key and CREATE TABLE management (department_ID number, head_ID number, temporary_acting text) which has department_ID as primary key</schema><question>
📄 许可证
该模型的新权重以及所有相关资产均在MIT许可证下开源。
👥 PipableAI团队
Avi Kothari、Pratham Gupta、Ritvik Aryan Kalra、Rohan Bhatial、Soham Acharya