🚀 EEVE-Korean-Instruct-2.8B-v1.0
EEVE-Korean-Instruct-2.8B-v1.0 是基于大语言模型领域开发的模型,它在特定基础模型上进行微调,适用于韩语相关的语言处理任务,为韩语语言交互等场景提供支持。

🚀 快速开始
加入我们的 Discord 社区!
如果您对大语言模型领域充满热情,希望交流知识和见解,我们诚挚地邀请您加入我们的 Discord 服务器。值得注意的是,该服务器主要使用韩语。大语言模型的发展日新月异,如果不积极分享,我们的知识很快就会过时。让我们携手合作,共同产生更大的影响!点击此处加入:Discord 链接。
✨ 主要特性
团队信息
研究人员 |
工程师 |
产品管理 |
用户体验设计 |
郑明浩 金承德 崔承泽 |
金健 里夫奇·阿尔菲 韩相勋 姜秀贤 |
许博京 |
崔恩秀 |
模型介绍
该模型是 yanolja/EEVE-Korean-2.8B-v1.0 的微调版本,而 yanolja/EEVE-Korean-2.8B-v1.0 是 microsoft/phi-2 的韩语词汇扩展版本。具体来说,我们通过 Axolotl 使用了直接偏好优化(DPO)方法。
更多详细信息,请参考我们的技术报告:Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models。
提示模板
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: {prompt}
Assistant:
📦 安装指南
文档未提供安装步骤,暂不展示。
💻 使用示例
基础用法
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("yanolja/EEVE-Korean-Instruct-2.8B-v1.0", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("yanolja/EEVE-Korean-Instruct-2.8B-v1.0", trust_remote_code=True)
prompt_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {prompt}\nAssistant:\n"
text = '한국의 수도는 어디인가요? 아래 선택지 중 골라주세요.\n\n(A) 경성\n(B) 부산\n(C) 평양\n(D) 서울\n(E) 전주'
model_inputs = tokenizer(prompt_template.format(prompt=text), return_tensors='pt')
outputs = model.generate(**model_inputs, max_new_tokens=256)
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(output_text)
示例输出
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: 한국의 수도는 어디인가요? 아래 선택지 중 골라주세요.
(A) 경성
(B) 부산
(C) 평양
(D) 서울
(E) 전주
Assistant:
한국의 수도는 (D) 서울입니다. 서울은 수도권과 수도권 내의 주요 도시들을 포함하는 광역 행정구역으로, 대한민국의 수도입니다. 서울은 수도권 인구의 약 70%를 차지하며, 대한민국의 경제, 정치, 문화의 중심지입니다.
📚 详细文档
训练数据
引用信息
@misc{kim2024efficient,
title={Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models},
author={Seungduk Kim and Seungtaek Choi and Myeongho Jeong},
year={2024},
eprint={2402.14714},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{cui2023ultrafeedback,
title={UltraFeedback: Boosting Language Models with High-quality Feedback},
author={Ganqu Cui and Lifan Yuan and Ning Ding and Guanming Yao and Wei Zhu and Yuan Ni and Guotong Xie and Zhiyuan Liu and Maosong Sun},
year={2023},
eprint={2310.01377},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{SlimOrcaDedup,
title = {SlimOrca Dedup: A Deduplicated Subset of SlimOrca},
author = {Wing Lian and Guan Wang and Bleys Goodson and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium" and Nathan Hoos},
year = {2023},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup/}
}
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
详细结果可在 此处 查看。
指标 |
值 |
平均值 |
58.71 |
AI2 Reasoning Challenge (25-Shot) |
58.28 |
HellaSwag (10-Shot) |
72.42 |
MMLU (5-Shot) |
53.35 |
TruthfulQA (0-shot) |
48.32 |
Winogrande (5-shot) |
74.82 |
GSM8k (5-shot) |
45.11 |
📄 许可证
本项目采用 Apache-2.0 许可证。