language: id
tags:
- indobert
- indobenchmark
- indonlu
license: mit
inference: false
datasets:
- Indo4B
IndoBERT 大型模型(第一阶段 - 不区分大小写)
IndoBERT 是基于 BERT 模型的印度尼西亚语先进语言模型。预训练模型使用了掩码语言建模(MLM)目标和下一句预测(NSP)目标进行训练。
所有预训练模型
模型名称 |
参数数量 |
架构 |
训练数据 |
indobenchmark/indobert-base-p1 |
124.5M |
Base |
Indo4B (23.43 GB 文本) |
indobenchmark/indobert-base-p2 |
124.5M |
Base |
Indo4B (23.43 GB 文本) |
indobenchmark/indobert-large-p1 |
335.2M |
Large |
Indo4B (23.43 GB 文本) |
indobenchmark/indobert-large-p2 |
335.2M |
Large |
Indo4B (23.43 GB 文本) |
indobenchmark/indobert-lite-base-p1 |
11.7M |
Base |
Indo4B (23.43 GB 文本) |
indobenchmark/indobert-lite-base-p2 |
11.7M |
Base |
Indo4B (23.43 GB 文本) |
indobenchmark/indobert-lite-large-p1 |
17.7M |
Large |
Indo4B (23.43 GB 文本) |
indobenchmark/indobert-lite-large-p2 |
17.7M |
Large |
Indo4B (23.43 GB 文本) |
如何使用
加载模型和分词器
from transformers import BertTokenizer, AutoModel
tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-large-p1")
model = AutoModel.from_pretrained("indobenchmark/indobert-large-p1")
提取上下文表示
x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1)
print(x, model(x)[0].sum())
作者
IndoBERT 由 Bryan Wilie*, Karissa Vincentio*, Genta Indra Winata*, Samuel Cahyawijaya*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti 进行了训练和评估。
引用方式
如果您使用了我们的成果,请引用以下内容:
@inproceedings{wilie2020indonlu,
title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},
author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti},
booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
year={2020}
}