🚀 用于问答的Electra-base模型
该模型基于Electra-base语言模型,专注于抽取式问答任务,使用SQuAD 2.0数据集进行训练和评估,能为问答场景提供高效准确的解决方案。
🚀 快速开始
你可以参考以下代码示例快速使用该模型,具体使用方法可根据不同的框架进行选择。
✨ 主要特性
- 语言模型:electra-base
- 语言:英语
- 下游任务:抽取式问答
- 训练数据:SQuAD 2.0
- 评估数据:SQuAD 2.0
- 代码示例:可查看 FARM 中的 示例
- 基础设施:1x Tesla v100
📦 安装指南
文档未提及具体安装步骤,可参考代码示例中的依赖库安装说明。
💻 使用示例
基础用法
在Transformers框架中
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/electra-base-squad2"
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
在FARM框架中
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer
model_name = "deepset/electra-base-squad2"
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input)
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)
在haystack框架中
若要进行大规模问答(即处理多篇文档而非单个段落),可以在 haystack 中加载该模型:
reader = FARMReader(model_name_or_path="deepset/electra-base-squad2")
reader = TransformersReader(model="deepset/electra-base-squad2",tokenizer="deepset/electra-base-squad2")
高级用法
文档未提及高级用法相关代码示例。
📚 详细文档
超参数设置
seed=42
batch_size = 32
n_epochs = 5
base_LM_model = "google/electra-base-discriminator"
max_seq_len = 384
learning_rate = 1e-4
lr_schedule = LinearWarmup
warmup_proportion = 0.1
doc_stride=128
max_query_length=64
性能评估
使用 官方评估脚本 在SQuAD 2.0开发集上进行评估,结果如下:
"exact": 77.30144024256717,
"f1": 81.35438272008543,
"total": 11873,
"HasAns_exact": 74.34210526315789,
"HasAns_f1": 82.45961302894314,
"HasAns_total": 5928,
"NoAns_exact": 80.25231286795626,
"NoAns_f1": 80.25231286795626,
"NoAns_total": 5945
🔧 技术细节
文档未提及具体技术实现细节。
📄 许可证
本模型使用的许可证为 cc-by-4.0。
👥 作者
- Vaishali Pal
vaishali.pal [at] deepset.ai
- Branden Chan:
branden.chan [at] deepset.ai
- Timo Möller:
timo.moeller [at] deepset.ai
- Malte Pietsch:
malte.pietsch [at] deepset.ai
- Tanay Soni:
tanay.soni [at] deepset.ai
注意事项
本模型是从Haystack模型仓库借用的,用于添加TensorFlow模型。