标签:
- 训练生成
模型索引:
- 名称: Qra-1b-dolly-instruction-0.1
结果: []
数据集:
- s3nh/alpaca-dolly-instruction-only-polish
语言:
- 波兰语
推理: 是
许可证: llama2
管道标签: 文本生成
Qra-1b-dolly-instruction-0.1
该模型是基于OPI-PG/Qra-1b在s3nh/alpaca-dolly-instruction-only-polish数据集上微调的版本。
模型描述
基于OPI-PG/Qra-1b训练
用途与限制
该模型针对问答任务进行了微调。虽然可以用于聊天,但由于数据集中不包含对话内容,效果可能不佳。
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
model_id = "nie3e/Qra-1b-dolly-instruction-0.1"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, device=device
)
def get_answer(system_prompt: str, user_prompt: str) -> str:
input_msg = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
prompt = pipe.tokenizer.apply_chat_template(
input_msg, tokenize=False,
add_generation_prompt=True
)
outputs = pipe(
prompt, max_new_tokens=512, do_sample=False, temperature=0.1, top_k=50,
top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id,
pad_token_id=pipe.tokenizer.pad_token_id
)
return outputs[0]['generated_text'][len(prompt):].strip()
print(
get_answer(
system_prompt="你是一个友好的聊天机器人",
user_prompt="请解释什么是架构决策记录文档"
)
)
训练与评估数据
数据集: s3nh/alpaca-dolly-instruction-only-polish
每条数据通过以下函数转换为对话格式:
system_message = """你是一个友好的聊天机器人"""
def create_conversation(sample) -> dict:
strip_characters = "\"'"
return {
"messages": [
{"role": "system", "content": system_message},
{"role": "user",
"content": f"{sample['instruction'].strip(strip_characters)} "
f"{sample['input'].strip(strip_characters)}"},
{"role": "assistant",
"content": f"{sample['output'].strip(strip_characters)}"}
]
}
训练/测试集划分: 90%/10%
训练过程
GPU: 2块RTX 4060Ti 16GB
训练时长: 约1小时
使用accelerate + deepspeed配置:
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
gradient_accumulation_steps: 2
zero3_init_flag: false
zero_stage: 1
distributed_type: DEEPSPEED
downcast_bf16: 'no'
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 2
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
训练超参数
Lora配置:
peft_config = LoraConfig(
lora_alpha=128,
lora_dropout=0.05,
r=256,
bias="none",
target_modules="all-linear",
task_type="CAUSAL_LM"
)
训练参数:
args = TrainingArguments(
output_dir="Qra-1b-dolly-instruction-0.1",
num_train_epochs=3,
per_device_train_batch_size=3,
gradient_accumulation_steps=2,
gradient_checkpointing=True,
optim="adamw_torch_fused",
logging_steps=10,
save_strategy="epoch",
learning_rate=2e-4,
bf16=True,
tf32=True,
max_grad_norm=0.3,
warmup_ratio=0.03,
lr_scheduler_type="constant",
push_to_hub=False,
report_to=["tensorboard"],
)
框架版本
- PEFT 0.10.0
- Transformers 4.39.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2