license: cc-by-nc-4.0
tags:
- 模型融合
- mergekit工具
- lazymergekit工具
- weezywitasneezy/BenchmarkEngineering-7B-slerp
- senseable/WestLake-7B-v2
base_model:
- weezywitasneezy/BenchmarkEngineering-7B-slerp
- senseable/WestLake-7B-v2
model-index:
- name: BenchmarkEngineering-F2-7B-slerp
results:
- task:
type: 文本生成
name: 文本生成
dataset:
name: AI2推理挑战赛(25样本)
type: ai2_arc
config: ARC挑战赛
split: 测试集
args:
num_few_shot: 25
metrics:
- type: 标准化准确率
value: 73.46
name: 标准化准确率
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: 开放LLM排行榜
- task:
type: 文本生成
name: 文本生成
dataset:
name: HellaSwag(10样本)
type: hellaswag
split: 验证集
args:
num_few_shot: 10
metrics:
- type: 标准化准确率
value: 88.88
name: 标准化准确率
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: 开放LLM排行榜
- task:
type: 文本生成
name: 文本生成
dataset:
name: MMLU(5样本)
type: cais/mmlu
config: 全科目
split: 测试集
args:
num_few_shot: 5
metrics:
- type: 准确率
value: 64.5
name: 准确率
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: 开放LLM排行榜
- task:
type: 文本生成
name: 文本生成
dataset:
name: TruthfulQA(0样本)
type: truthful_qa
config: 多选题
split: 验证集
args:
num_few_shot: 0
metrics:
- type: mc2
value: 72.37
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: 开放LLM排行榜
- task:
type: 文本生成
name: 文本生成
dataset:
name: Winogrande(5样本)
type: winogrande
config: winogrande_xl
split: 验证集
args:
num_few_shot: 5
metrics:
- type: 准确率
value: 86.11
name: 准确率
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: 开放LLM排行榜
- task:
type: 文本生成
name: 文本生成
dataset:
name: GSM8k(5样本)
type: gsm8k
config: 主测试集
split: 测试集
args:
num_few_shot: 5
metrics:
- type: 准确率
value: 69.29
name: 准确率
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: 开放LLM排行榜
BenchmarkEngineering-F2-7B-slerp
本次融合旨在通过整合Westlake-7B-v2模型进一步提升原始BenchmarkEngineering模型的性能。虽然Winogrande分数有所提高,但其他基准测试成绩有所下降。
BenchmarkEngineering-F2-7B-slerp是使用LazyMergekit工具融合以下模型的成果:
详细结果请查阅此处
评估指标 |
数值 |
平均得分 |
75.77 |
AI2推理挑战赛(25样本) |
73.46 |
HellaSwag(10样本) |
88.88 |
MMLU(5样本) |
64.50 |
TruthfulQA(0样本) |
72.37 |
Winogrande(5样本) |
86.11 |
GSM8k(5样本) |
69.29 |
🧩 融合配置
slices:
- sources:
- model: weezywitasneezy/BenchmarkEngineering-7B-slerp
layer_range: [0, 32]
- model: senseable/WestLake-7B-v2
layer_range: [0, 32]
merge_method: slerp
base_model: weezywitasneezy/BenchmarkEngineering-7B-slerp
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 使用示例
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "weezywitasneezy/BenchmarkEngineering-F2-7B-slerp"
messages = [{"role": "用户", "content": "什么是大语言模型?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])