标签:
- 合并
- mergekit
- lazymergekit
- abideen/AlphaMonarch-dora
基础模型:
- abideen/AlphaMonarch-dora
许可证: cc-by-nc-4.0
语言:
- 德语
- 英语
Spaetzle-v60-7b
这是一个渐进式合并模型(主要采用dare-ties方法,部分使用slerp),旨在为英语和德语本地任务提供合适的折衷方案。
Spaetzle-v60-7b是使用LazyMergekit合并以下模型的结果:
基准测试
目前性能表现良好:例如在EQ-Bench测试中,得分(v2_de)为65.08(可解析值:171.0)。
来自Occiglot欧洲大语言模型排行榜的数据:
模型 |
德语 |
英语 |
ARC英语 |
TruthfulQA英语 |
Belebele英语 |
HellaSwag英语 |
MMLU英语 |
ARC德语 |
TruthfulQA德语 |
Belebele德语 |
HellaSwag德语 |
MMLU德语 |
mistral-community/Mixtral-8x22B-v0.1 |
66.81 |
72.87 |
70.56 |
52.29 |
93.89 |
70.41 |
77.17 |
63.9 |
29.31 |
92.44 |
77.9 |
70.49 |
cstr/Spaetzle-v60-7b |
60.95 |
71.65 |
69.88 |
66.24 |
90.11 |
68.43 |
63.59 |
58 |
37.31 |
84.22 |
70.09 |
55.11 |
VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct |
60.07 |
74.71 |
74.49 |
66.19 |
91.67 |
74.55 |
66.65 |
59.37 |
29.57 |
88.56 |
66.43 |
56.44 |
occiglot/occiglot-7b-de-en-instruct |
56.65 |
61.7 |
60.41 |
49.38 |
81.22 |
60.43 |
57.06 |
54.49 |
31.09 |
77.22 |
68.84 |
51.59 |
occiglot/occiglot-7b-de-en |
54.01 |
58.78 |
55.63 |
42.33 |
79.11 |
59.99 |
56.84 |
50.56 |
26.27 |
74.33 |
67.42 |
51.46 |
meta-llama/Meta-Llama-3-8B |
53.89 |
63.08 |
58.02 |
43.87 |
86.44 |
61.75 |
65.3 |
46.45 |
24.24 |
81.11 |
62.48 |
55.18 |
mistralai/Mistral-7B-Instruct-v0.2 |
53.52 |
67.63 |
63.74 |
66.81 |
82.44 |
65.96 |
59.2 |
48.59 |
37.69 |
68.89 |
62.24 |
50.2 |
occiglot/occiglot-7b-eu5-instruct |
53.15 |
57.78 |
55.89 |
44.9 |
74.67 |
59.92 |
53.51 |
52.95 |
28.68 |
66.78 |
68.52 |
48.82 |
clibrain/lince-mistral-7b-it-es |
52.98 |
62.43 |
62.46 |
43.32 |
82.44 |
63.86 |
60.06 |
49.44 |
28.17 |
75 |
61.64 |
50.64 |
mistralai/Mistral-7B-v0.1 |
52.8 |
62.73 |
61.26 |
42.62 |
84.44 |
62.89 |
62.46 |
47.65 |
28.43 |
73.89 |
61.06 |
52.96 |
LeoLM/leo-mistral-hessianai-7b |
51.78 |
56.11 |
52.22 |
42.92 |
73.67 |
57.86 |
53.88 |
47.48 |
25.25 |
69.11 |
68.21 |
48.83 |
在低比特量化开放大语言模型排行榜中,int4-inc量化版本的表现:
类型 |
模型 |
平均分 ⬆️ |
ARC-c |
ARC-e |
Boolq |
HellaSwag |
Lambada |
MMLU |
Openbookqa |
Piqa |
Truthfulqa |
Winogrande |
参数量(亿) |
大小(G) |
🍒 |
Intel/SOLAR-10.7B-Instruct-v1.0-int4-inc |
68.49 |
60.49 |
82.66 |
88.29 |
68.29 |
73.36 |
62.43 |
35.6 |
80.74 |
56.06 |
76.95 |
10.57 |
5.98 |
🍒 |
cstr/Spaetzle-v60-7b-int4-inc |
68.01 |
62.12 |
85.27 |
87.34 |
66.43 |
70.58 |
61.39 |
37 |
82.26 |
50.18 |
77.51 |
7.04 |
4.16 |
🔷 |
TheBloke/SOLAR-10.7B-Instruct-v1.0-GGUF |
66.6 |
60.41 |
83.38 |
88.29 |
67.73 |
52.42 |
62.04 |
37.2 |
82.32 |
56.3 |
75.93 |
10.73 |
6.07 |
🔷 |
cstr/Spaetzle-v60-7b-Q4_0-GGUF |
66.44 |
61.35 |
85.19 |
87.98 |
66.54 |
52.78 |
62.05 |
40.6 |
81.72 |
47 |
79.16 |
7.24 |
4.11 |
🍒 |
Intel/Mistral-7B-Instruct-v0.2-int4-inc |
65.73 |
55.38 |
81.44 |
85.26 |
65.67 |
70.89 |
58.66 |
34.2 |
80.74 |
51.16 |
73.95 |
7.04 |
4.16 |
🍒 |
Intel/Phi-3-mini-4k-instruct-int4-inc |
65.09 |
57.08 |
83.33 |
86.18 |
59.45 |
68.14 |
66.62 |
38.6 |
79.33 |
38.68 |
73.48 |
3.66 |
2.28 |
🔷 |
TheBloke/Mistral-7B-Instruct-v0.2-GGUF |
63.52 |
53.5 |
77.9 |
85.44 |
66.9 |
50.11 |
58.45 |
38.8 |
77.58 |
53.12 |
73.4 |
7.24 |
4.11 |
🍒 |
Intel/Meta-Llama-3-8B-Instruct-int4-inc |
62.93 |
51.88 |
81.1 |
83.21 |
57.09 |
71.32 |
62.41 |
35.2 |
78.62 |
36.35 |
72.14 |
7.2 |
5.4 |
污染检查结果(参考模型:Mistral instruct 7b v0.1):
- MMLU: 结果 < 0.1, 百分比: 0.19
- TruthfulQA: 结果 < 0.1, 百分比: 0.34
- GSM8k: 结果 < 0.1, 百分比: 0.39
🧩 配置
models:
- model: cstr/Spaetzle-v58-7b
- model: abideen/AlphaMonarch-dora
parameters:
density: 0.60
weight: 0.30
merge_method: dare_ties
base_model: cstr/Spaetzle-v58-7b
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
💻 使用方式
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/Spaetzle-v60-7b"
messages = [{"role": "user", "content": "什么是大语言模型?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])