pipeline_tag: 文本转语音
library_name: cosyvoice
CosyVoice
[CosyVoice 论文][CosyVoice 工作室][CosyVoice 代码]
关于 SenseVoice
,请访问 SenseVoice 仓库 和 SenseVoice 空间。
安装
克隆并安装
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
cd CosyVoice
git submodule update --init --recursive
- 安装 Conda:请参考 https://docs.conda.io/en/latest/miniconda.html
- 创建 Conda 环境:
conda create -n cosyvoice python=3.8
conda activate cosyvoice
conda install -y -c conda-forge pynini==2.1.5
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
sudo apt-get install sox libsox-dev
sudo yum install sox sox-devel
模型下载
强烈建议下载预训练的 CosyVoice-300M
、CosyVoice-300M-SFT
、CosyVoice-300M-Instruct
模型和 CosyVoice-ttsfrd
资源。
如果您是该领域的专家,并且只对从头开始训练自己的 CosyVoice 模型感兴趣,可以跳过此步骤。
from modelscope import snapshot_download
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')
snapshot_download('iic/CosyVoice-300M-SFT', local_dir='pretrained_models/CosyVoice-300M-SFT')
snapshot_download('iic/CosyVoice-300M-Instruct', local_dir='pretrained_models/CosyVoice-300M-Instruct')
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
mkdir -p pretrained_models
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct
git clone https://www.modelscope.cn/iic/CosyVoice-ttsfrd.git pretrained_models/CosyVoice-ttsfrd
可选地,您可以解压 ttsfrd
资源并安装 ttsfrd
包以获得更好的文本归一化性能。
注意,此步骤并非必需。如果不安装 ttsfrd
包,默认将使用 WeTextProcessing。
cd pretrained_models/CosyVoice-ttsfrd/
unzip resource.zip -d .
pip install ttsfrd-0.3.6-cp38-cp38-linux_x86_64.whl
基本用法
对于 zero_shot/跨语言推理,请使用 CosyVoice-300M
模型。
对于 sft 推理,请使用 CosyVoice-300M-SFT
模型。
对于 instruct 推理,请使用 CosyVoice-300M-Instruct
模型。
首先,将 third_party/Matcha-TTS
添加到 PYTHONPATH
。
export PYTHONPATH=third_party/Matcha-TTS
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav
import torchaudio
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT')
print(cosyvoice.list_avaliable_spks())
for i, j in enumerate(cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女', stream=False)):
torchaudio.save('sft_{}.wav'.format(i), j['tts_speech'], 22050)
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M')
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], 22050)
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k, stream=False)):
torchaudio.save('cross_lingual_{}.wav'.format(i), j['tts_speech'], 22050)
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-Instruct')
for i, j in enumerate(cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.', stream=False)):
torchaudio.save('instruct_{}.wav'.format(i), j['tts_speech'], 22050)
启动网页演示
您可以使用我们的网页演示页面快速熟悉 CosyVoice。
网页演示支持 sft/zero_shot/跨语言/instruct 推理。
详情请参阅演示网站。
python3 webui.py --port 50000 --model_dir pretrained_models/CosyVoice-300M
高级用法
对于高级用户,我们在 examples/libritts/cosyvoice/run.sh
中提供了训练和推理脚本。
您可以按照此配方熟悉 CosyVoice。
部署构建
可选地,如果您想使用 grpc 进行服务部署,
可以运行以下步骤。否则,可以忽略此步骤。
cd runtime/python
docker build -t cosyvoice:v1.0 .
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/grpc && python3 server.py --port 50000 --max_conc 4 --model_dir iic/CosyVoice-300M && sleep infinity"
cd grpc && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /opt/CosyVoice/CosyVoice/runtime/python/fastapi && MODEL_DIR=iic/CosyVoice-300M fastapi dev --port 50000 server.py && sleep infinity"
cd fastapi && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
讨论与交流
您可以直接在 Github Issues 上讨论。
也可以扫描二维码加入我们的官方钉钉群。
致谢
- 我们借鉴了大量 FunASR 的代码。
- 我们借鉴了大量 FunCodec 的代码。
- 我们借鉴了大量 Matcha-TTS 的代码。
- 我们借鉴了大量 AcademiCodec 的代码。
- 我们借鉴了大量 WeNet 的代码。
免责声明
以上内容仅供学术研究使用,旨在展示技术能力。部分示例来源于互联网。如有内容侵犯您的权益,请联系我们删除。