库名称:transformers
许可证:mit
任务标签:视频文本转文本


LLaVA-Video-7B-Qwen2-TPO
LLaVA-Video-7B-Qwen2-TPO,由论文《Temporal Preference Optimization for Long-form Video Understanding》提出,基于LLaVA-Video-7B-Qwen2进行了时间偏好优化。该模型在一系列基准测试中确立了最先进的性能,相比LLaVA-Video-7B平均性能提升了1.5%。特别值得一提的是,它在Video-MME基准测试中成为领先的7B参数模型。
项目页面:https://ruili33.github.io/tpo_website/
代码:https://github.com/ruili33/TPO
评估结果
模型 |
大小 |
LongVideoBench |
MLVU |
VideoMME (平均) |
NVILA [1] |
7B |
57.7 |
70.1 |
64.2/70.0 |
LLaVA-Video-7B [2] |
7B |
58.2 |
70.8 |
63.3/69.7 |
LLaVA-Video-7B-Qwen2-TPO |
7B |
60.1 |
71.1 |
65.6/71.5 |
快速开始
使用以下代码快速上手该模型。更多信息请参考我们的GitHub代码库。
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")
def load_video(self, video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
frame_time = [i/fps for i in frame_idx]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
spare_frames = vr.get_batch(frame_idx).asnumpy()
# import pdb;pdb.set_trace()
return spare_frames,frame_time,video_time
pretrained = "ruili0/LLaVA-Video-7B-TPO"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # 可添加其他llava_model_args参数
model.eval()
video_path = "local_demo/assets/dc_demo.mp4"
max_frames_num = "64"
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16()
video = [video]
conv_template = "qwen_1_5" # 确保为不同模型使用正确的对话模板
time_instruciton = f"视频时长为{video_time:.2f}秒,从中均匀采样了{len(video[0])}帧。这些帧位于{frame_time}时间点。请回答以下与该视频相关的问题。"
question = DEFAULT_IMAGE_TOKEN + f"{time_instruciton}\n请详细描述这个视频内容。"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
input_ids,
images=video,
modalities= ["video"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
许可证
本项目使用的部分数据集和检查点受其原始许可证约束。用户必须遵守这些原始许可证的所有条款和条件,包括但不限于数据集使用的OpenAI使用条款和基础语言模型(Qwen2许可证)的特定许可。除原始许可证规定外,本项目不施加任何额外限制。此外,提醒用户确保其使用行为符合所有适用法律法规。
引用
Bibtex格式:
@article{li2025temporal,
title={Temporal Preference Optimization for Long-Form Video Understanding},
author={Li, Rui and Wang, Xiaohan and Zhang, Yuhui and Wang, Zeyu and Yeung-Levy, Serena},
journal={arXiv preprint arXiv:2501.13919},
year={2025}
}
参考文献:
[1]. Liu, Z., Zhu, L., Shi, B., Zhang, Z., Lou, Y., Yang, S., ... & Lu, Y. (2024). NVILA: Efficient Frontier Visual Language Models. arXiv preprint arXiv:2412.04468.
[2]. Zhang, Y., Wu, J., Li, W., Li, B., Ma, Z., Liu, Z., & Li, C. (2024). Video instruction tuning with synthetic data. arXiv preprint arXiv:2410.02713.