language: pt
license: mit
tags:
- bert
- pytorch
datasets:
- brWaC
BERTimbau Large (又名 "bert-large-portuguese-cased")

简介
BERTimbau Large 是一个针对巴西葡萄牙语的预训练 BERT 模型,在三个下游 NLP 任务上达到了最先进的性能:命名实体识别、句子文本相似度和文本蕴含识别。该模型提供两种规模:Base 和 Large。
更多信息或请求,请访问 BERTimbau 仓库。
可用模型
模型 |
架构 |
层数 |
参数量 |
neuralmind/bert-base-portuguese-cased |
BERT-Base |
12 |
110M |
neuralmind/bert-large-portuguese-cased |
BERT-Large |
24 |
335M |
使用方法
from transformers import AutoTokenizer
from transformers import AutoModelForPreTraining
from transformers import AutoModel
model = AutoModelForPreTraining.from_pretrained('neuralmind/bert-large-portuguese-cased')
tokenizer = AutoTokenizer.from_pretrained('neuralmind/bert-large-portuguese-cased', do_lower_case=False)
掩码语言建模预测示例
from transformers import pipeline
pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)
pipe('Tinha uma [MASK] no meio do caminho.')
获取 BERT 嵌入
import torch
model = AutoModel.from_pretrained('neuralmind/bert-large-portuguese-cased')
input_ids = tokenizer.encode('Tinha uma pedra no meio do caminho.', return_tensors='pt')
with torch.no_grad():
outs = model(input_ids)
encoded = outs[0][0, 1:-1]
引用
如果您使用了我们的工作,请引用:
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}