license: mit
language:
- ko
pipeline_tag: fill-mask
KF-DeBERTa
由KakaoBank与FNGuid联合发布的金融领域专用语言模型
模型说明
- KF-DeBERTa是同时训练通用语料与金融领域语料的语言模型
- 模型架构基于DeBERTa-v2构建
- 采用ELECTRA的RTD作为训练目标的DeBERTa-v3在部分任务(KLUE-RE/WoS/Retrieval)表现欠佳,最终选定DeBERTa-v2架构
- 在通用领域与金融领域下游任务中均表现优异
- 针对金融领域任务进行了多数据集严格验证
- 在两大领域均超越现有语言模型,KLUE基准测试中表现优于RoBERTa-Large
使用方式
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("kakaobank/kf-deberta-base")
tokenizer = AutoTokenizer.from_pretrained("kakaobank/kf-deberta-base")
text = "KakaoBank与FNGuid联合发布金融专用语言模型"
tokens = tokenizer.tokenize(text)
print(tokens)
inputs = tokenizer(text, return_tensors="pt")
model_output = model(**inputs)
print(model_output)
基准测试
- 所有任务仅进行基础超参数搜索:
- 批大小:{16, 32}
- 学习率:{1e-5, 3e-5, 5e-5}
- 权重衰减:{0, 0.01}
- 预热比例:{0, 0.1}
KLUE基准测试
模型 |
YNAT |
KLUE-ST |
KLUE-NLI |
KLUE-NER |
KLUE-RE |
KLUE-DP |
KLUE-MRC |
WoS |
平均 |
|
F1 |
Pearsonr/F1 |
ACC |
F1-实体/F1-字符 |
F1-micro/AUC |
UAS/LAS |
EM/ROUGE |
JGA/F1-S |
|
mBERT (基础版) |
82.64 |
82.97/75.93 |
72.90 |
75.56/88.81 |
58.39/56.41 |
88.53/86.04 |
49.96/55.57 |
35.27/88.60 |
71.26 |
XLM-R (基础版) |
84.52 |
88.88/81.20 |
78.23 |
80.48/92.14 |
57.62/57.05 |
93.12/87.23 |
26.76/53.36 |
41.54/89.81 |
72.28 |
XLM-R (大型版) |
87.30 |
93.08/87.17 |
86.40 |
82.18/93.20 |
58.75/63.53 |
92.87/87.82 |
35.23/66.55 |
42.44/89.88 |
76.17 |
KR-BERT (基础版) |
85.36 |
87.50/77.92 |
77.10 |
74.97/90.46 |
62.83/65.42 |
92.87/87.13 |
48.95/58.38 |
45.60/90.82 |
74.67 |
KoELECTRA (基础版) |
85.99 |
93.14/85.89 |
86.87 |
86.06/92.75 |
62.67/57.46 |
90.93/87.07 |
59.54/65.64 |
39.83/88.91 |
77.34 |
KLUE-BERT (基础版) |
86.95 |
91.01/83.44 |
79.87 |
83.71/91.17 |
65.58/68.11 |
93.07/87.25 |
62.42/68.15 |
46.72/91.59 |
78.50 |
KLUE-RoBERTa (小型) |
85.95 |
91.70/85.42 |
81.00 |
83.55/91.20 |
61.26/60.89 |
93.47/87.50 |
58.25/63.56 |
46.65/91.50 |
77.28 |
KLUE-RoBERTa (基础) |
86.19 |
92.91/86.78 |
86.30 |
83.81/91.09 |
66.73/68.11 |
93.75/87.77 |
69.56/74.64 |
47.41/91.60 |
80.48 |
KLUE-RoBERTa (大型) |
85.88 |
93.20/86.13 |
89.50 |
84.54/91.45 |
71.06/73.33 |
93.84/87.93 |
75.26/80.30 |
49.39/92.19 |
82.43 |
KF-DeBERTa (基础版) |
87.51 |
93.24/87.73 |
88.37 |
89.17/93.30 |
69.70/75.07 |
94.05/87.97 |
72.59/78.08 |
50.21/92.59 |
82.83 |
- 粗体表示所有模型中最高分,下划线表示基础模型中最高分
金融领域基准
模型 |
FN-情感分析(v1) |
FN-情感分析(v2) |
FN-金融新闻 |
FN-命名实体 |
KorFPB |
KorFiQA-SA |
Kor头条新闻 |
平均(不含FiQA-SA) |
|
准确率 |
准确率 |
准确率 |
F1微观平均 |
准确率 |
MSE |
平均F1值 |
|
KLUE-RoBERTa(基础) |
98.26 |
91.21 |
96.34 |
90.31 |
90.97 |
0.0589 |
81.11 |
94.03 |
KoELECTRA(基础) |
98.26 |
90.56 |
96.98 |
89.81 |
92.36 |
0.0652 |
80.69 |
93.90 |
KF-DeBERTa(基础) |
99.36 |
92.29 |
97.63 |
91.80 |
93.47 |
0.0553 |
82.12 |
95.27 |
- FN-情感分析:金融领域情感分析
- FN-金融新闻:金融广告新闻分类
- FN-命名实体:金融领域命名实体识别
- KorFPB:FinancialPhraseBank翻译数据
- 引用:
Malo, Pekka, et al. "Good debt or bad debt: Detecting semantic orientations in economic texts." Journal of the Association for Information Science and Technology 65.4 (2014): 782-796.
- KorFiQA-SA:FiQA-SA翻译数据
- 引用:
Maia, Macedo & Handschuh, Siegfried & Freitas, Andre & Davis, Brian & McDermott, Ross & Zarrouk, Manel & Balahur, Alexandra. (2018). WWW'18 Open Challenge: Financial Opinion Mining and Question Answering. WWW '18: Companion Proceedings of the The Web Conference 2018. 1941-1942. 10.1145/3184558.3192301.
- Kor头条新闻:黄金商品新闻数据集
- 引用:
Sinha, A., & Khandait, T. (2021, April). Impact of News on the Commodity Market: Dataset and Results. In Future of Information and Communication Conference (pp. 589-601). Springer, Cham.
通用领域基准
模型 |
NSMC |
PAWS |
KorNLI |
KorSTS |
KorQuAD |
平均(不含KorQuAD) |
|
准确率 |
准确率 |
准确率 |
斯皮尔曼系数 |
EM/F1 |
|
KLUE-RoBERTa(基础) |
90.47 |
84.79 |
81.65 |
84.40 |
86.34/94.40 |
85.33 |
KoELECTRA(基础) |
90.63 |
84.45 |
82.24 |
85.53 |
84.83/93.45 |
85.71 |
KF-DeBERTa(基础) |
91.36 |
86.14 |
84.54 |
85.99 |
86.60/95.07 |
87.01 |